Category Archives: SSD

Solid State Storage: Enterprise State Of Affairs

Here In A Flash!

Its been a crazy last few years in the flash storage space. Things really started taking off around 2006 when NAND flash and moores law got together. in 2010 it was clear that flash storage was going to be a major part of your storage makeup in the future. It may not be NAND flash specifically though. It will be some kind of memory and not spinning disks.

Breaking The Cost Barrier.

For the last few years, I’ve always told people to price out on the cost of IO not the cost of storage. Buying flash storage was mainly a niche product solving a niche problem like to speed up random IO heavy tasks. With the cost of flash storage at or below standard disk based SAN storage with all the same connectivity features and the same software features I think it’s time to put flash storage on the same playing field as our old stalwart SAN solutions.

Right now at the end of 2012, you can get a large amount of flash storage. There is still this perception that it is too expensive and too risky to build out all flash storage arrays. I am here to prove at least cost isn’t as limiting a factor as you may believe. Traditional SAN storage can run you from 5 dollars a Gigabyte to 30 dollars a Gigabyte for spinning disks. You can easily get into an all flash array in that same range.

Here’s Looking At You Flash.

This is a short list of flash vendors currently on the market. I’ve thrown in a couple non-SAN types and a couple traditional SAN’s that have integrated flash storage in them. Please, don’t email me complaining that X vendor didn’t make this list or that Y vendor has different pricing. All the pricing numbers were gathered from published sources on the internet. These sources include, the vendors own website, published costs from TPC executive summaries and official third party price listings. If you are a vendor and don’t like the prices listed here then publicly publish your price list.

There are always two cost metrics I look at dollars per Gigabyte in raw capacity and dollars per Gigabyte in usable capacity. The first number is pretty straight forward. The second metric can get tricky in a hurry. On a disk based SAN that pretty much comes down to what RAID or protection scheme you use. Flash storage almost always introduces deduplication and compression which can muddy the waters a bit.

Fibre Channel/iSCSI vendor list

Nimbus Data

Appearing on the scene in 2006, they have two products currently on the market. the S-Class storage array and the E-Class storage array.

The S-Class seems to be their lower end entry but does come with an impressive software suite. It does provide 10GbE and Fibre Channel connectivity. Looking around at the cost for the S-Class I found a 2.5TB model for 25,000 dollars. That comes out to 9.7 dollars per Gigabyte in raw space. The S-Class is their super scaleable and totally redundant unit. I found a couple of quotes that put it in at 10.oo dollars a Gigabyte of raw storage. Already we have a contender!

Pure Storage

In 2009 Pure Storage started selling their flash only storage solutions. They include deduplication and compression in all their arrays and include that in the cost per Gigabyte. I personally find this a bit fishy since I always like to test with incompressible data as a worst case for any array. This would also drive up their cost. They claim between 5.00 and 10.00 dollars per usable Gigabyte and I haven’t found any solid source for public pricing on their array yet to dispute or confirm this number. They also have a generic “compare us” page on their website that at best is misleading and at worst plain lies. Since they don’t call out any specific vendor in their comparison page its hard to pin them for falsehoods but you can read between the lines.

Violin Memory

Violin Memory started in earnest around 2005 selling not just flash based but memory based arrays. Very quickly they transitioned to all flash arrays. They have two solutions on the market today. The 3000 series which allows some basic SAN style setups but also has direct attachments via external PCIe channels. It comes in at 10.50 dollars a Gigabyte raw and 12 dollars a Gigabyte usable. The 6000 series is their flagship product and the pricing reflects it. At 18.00 dollars per Gigabyte raw it is getting up there on the price scale. Again, not the cheapest but they are well established and have been used and are resold by HP.

Texas Memory Systems/IBM

If you haven’t heard, TMS was recently purchased by IBM. Based in Houston, TX I’ve always had a soft spot for them. They were also the first non-disk based storage solution I ever used. The first time I put a RamSan in and got 200,000 IO’s out of the little box I was sold. Of course it was only 64 Gigabytes of space and cost a small fortune. Today they have a solid flash based fibre attached and iSCSI attached lignup. I couldn’t find any pricing on the current flagship RamSan 820 but the 620 has been used in TPC benchmarks and is still in circulation. It is a heavy weight at 33.30 dollars a Gigabyte of raw storage.

Skyera

A new entrant into this space they are boasting some serious cost savings. They claim a 3.00 dollar per Gigabyte usable on their currently shipping product. The unit also includes options for deduplication and compression which can drive the cost down even further. It is also a half depth 1U solution with a built-in 10GbE switch. They are working on a fault tolerant unit due out second half of next year that will up the price a bit but add Fibre Channel connectivity. They have a solid pedigree as they are made up of the guys that brought the Sanforce controllers to market. They aren’t a proven company yet, and I haven’t seen a unit or been granted access to one ether. Still, I’d keep eye on them. At those price points and the crazy small footprint it may be worth taking a risk on them.

IBM

I’m putting the DS3524 on a separate entry to give you some contrast. This is a traditional SAN frame that has been populated with all SSD drives. With 112 200 GB drives and a total cost of 702908.00 it comes in at 31.00 a Gigabyte of raw storage. On the higher end but still in the price range I generally look to stay in.

SUN/Oracle

I couldn’t resist putting in a Sun F5100 in the mix. at 3,099,000.00 dollars it is the most expensive array I found listed. It has 38.4 Terabytes of raw capacity giving us a 80.00 dollars per Gigabyte price tag. Yikes!

Dell EqualLogic

When the 3Par deal fell apart Dell quickly gobbled up EqualLogic, a SAN manufacturer that focused on iSCSI solutions. This isn’t a flash array. I wanted to add it as contrast to the rest of the list. I found a 5.4 Terabyte array with a 7.00 dollar per Gigabyte raw storage price tag. Not horrible but still more expensive that some of our all flash solutions.

Fusion-io

What list would be complete without including the current king of the PCIe flash hill Fusion-io. I found a retail price listing for their 640 Gigabyte Duo card at 19,000 dollars giving us a 29.00 per usable Gigabyte. Looking at the next lowest card the 320 Gigabyte Duo at 7495.00 dollars ups the price to 32.20 per useable Gigabyte. They are wicked fast though 🙂

So Now What?

Armed with a bit of knowledge you can go forth and convince your boss and storage team that a SAN array fully based on flash is totally doable from a cost perspective. It may mean taking a bit of a risk but the rewards can be huge.

 

Speaking at PASS Summit 2012

It’s Not A Repeat

Speaking at the PASS Summit last year was one of the highlights of my career. I had a single regular session initially and picked up an additional session due to a drop in the schedule. Both talks were fun and I got some solid feedback.

The Boy Did Good

I won’t say great, there were some awesome sessions last year. I did do well enough to get an invite to submit for all the “invite only sessions”. I was stunned. I don’t have any material put together for a half day or a full day session yet and the window to submit sessions was a lot smaller this year. But I do have three new sessions and all of them could easily be extended from 75 minutes to 90 minutes. So, I submitted for both regular sessions and spotlight sessions and got one of both! WOO HOO!

The Lineup

I’ll be covering two topics near and dear to my heart.

How I Learned to Stop Worrying and Love My SAN [DBA-213-S]
Session Category: Spotlight Session (90 minutes)
Session Track: Enterprise Database Administration & Deployment

SANs and NASs have their challenges, but they also open up a whole new set of tools for disaster recovery and high availability. In this session, we’ll cover several different technologies that can make up a Storage Area Network. From Fibre Channel to iSCSI, there are similar technologies that every vendor implements. We’ll talk about the basics that apply to most SANs and strategies for setting up your storage. We’ll also cover SAN pitfalls as well as SQL Server-specific configuration optimizations that you can discuss with your storage teams. Don’t miss your chance to ask specific questions about your SAN problems.

I’ve built a career working with SAN and System Administrators. The goal of this session is to get you and your SAN Administrator speaking the same language, and to give you tools that BOTH of you can use to measure the health and performance of your IO system.

 

Integrating Solid State Storage with SQL Server [DBA-209]
Session Category: Regular Session (75 minutes)
Session Track: Enterprise Database Administration & Deployment

As solid state becomes more mainstream, there is a huge potential for performance gains in your environment. In this session, we will cover the basics of solid state storage, then look at specific designs and implementations of solid state storage from various vendors. Finally, we will look at different strategies for integrating solid state drives (SSDs) in your environment, both in new deployments and upgrades of existing systems. We will even talk about when you might want to skip SSDs and stay with traditional disk drives.

I’ve spoken quite a bit on solid state storage fundamentals this time around I’ll be tackling how people like myself and vendors are starting to mix SSD’s into the storage environment. Where it makes sense and where it can be a huge and costly mistake.

Finally

I hope to see you at the Summit again this year! Always feel free to come say hi and chat a bit. Networking is as important as the sessions and you will build friendships that last a lifetime.

Building A New Storage Test Server

We’re Gonna Need A Bigger Boat

Not to sound too obvious, I test IO systems. That means from time to time I have to refresh my environment if I want to test current hardware. Like you, I work for a living and can’t afford something like a Dell R910 Heck, I can’t afford to shell out for the stuff that Glenn Berry gets to play with these days. Yes, I work for the mighty Dell. No, they don’t give me loads of free hardware to just play with. That doesn’t mean I, or you, can’t have a solid test system that is expandable and a good platform for testing SQL Server.

The hardware choices, inexpensive doesn’t mean cheap

Well, most of the time. Realize I’m not building what I would consider a truly production ready server. Things like ECC memory and redundant power supplies are a must if you are building a “fire and forget” server to rack up. A good test server on the other hand doesn’t have the same up time requirements.

Case

A couple of years ago I would have bought something like a Aerocool Masstige. It will take a full size motherboard and has 10 5.25 bays. This allows me to then put something like this 3×5 5.25 to 3.5 mobile rack. with 10 bays I can put 15 hard drives in plus have one bay left over for something like a CD-Rom drive or another hard drive. The Aerocool Masstige does have two internal hard drive bays as well making for a total of 18 3.5″ drives in one case. The cost does add up though. The case has been discontinued but can still be found for around 110.00. The three drive cadges will run you another 100.oo. Oh, and you need a power supply that’s another 100.00. That brings the cost up to 510.00. Considering that a 3U Supermicro case with 15 bays will run you 700.00 easily. Not horrible for the amount of drive bays but there are better options now.

Norco RPC-4224 4U Server Case
This thing is big, I mean really big. It is deep and tall. It was designed to be a rack mount server but sits just fine on a shelf if you have clearance in the back. I was looking at another version of this same case that houses 20 drives but the price difference just made this hard pass up. This case isn’t a Supermicro case. It doesn’t have the build quality. To be honest though, I’m fine with that. What it does have is the ability to take a large range of ATX motherboards and a standard ATX power supply. Right now Newegg has this case on for 400.00. With a power supply that brings the total up to 500.00 still cheaper than the Supermicro with a ton of drive bays to boot. If you have worked with servers and had to cable them up you may notice that the RPC-4224 has a very different backplane layout. Every four drives has its own backplane and four lane SFF-8087 connector. Usually, most back planes have a single or maybe two connectors for 8 lanes shared via on board SAS expander. Since this doesn’t have that feature it actually makes it easier to build this thing for maximum speed. I can ether buy a very large RAID controller with 24 SAS ports or I can buy my own SAS expanders. The only down side to the backplanes on this server is the fact they are SAS 3Gb/s and not the newer 6Gb/s ports. For spinning drives it isn’t that big of an issue but if you are planning on stacking some SSD’s in those bays it can hurt you if the SSD’s support the newer protocol.

The one warning I’ll make is this thing is very front heavy. Oddly enough having 24 drives stuffed in the front doesn’t make for good weight distribution.  Pro tip, don’t put the hard drives in until the server is where you want it. It is a lot easier to move the case if it isn’t as heavy as two car batteries.

CPU

Just like Glenn, I think the Core i7 2600k is a very good choice for this build. At 314.00 you are only paying a slight premium over the 2600 for a lot more flexibility, *cough*overclocking*cough*.

Motherboard

I thought long and hard on this one and settled on a GIGABYTE GA-Z68A-D3H-B3. This is a very reasonably priced motherboard at 129.00 with some nice features. First, it is based off of the Intel Z68 chipset which means I have video built into the system and don’t have to give up a PCIe slot to video. Secondly, it has USB 3.0 which makes it easy to hook up an external USB 3.0 drive and get some livable speeds. Thirdly, it has SATA III 6Gb/s ports native. It only has two out of the six ports available at that speed but it does give me a few more drive options outside a add on RAID controller. Lastly, the PCIe slots on board are upgradeable to the new PCIe 3.0 standard. This means I don’t have to change my motherboard out to get a nice little bump in speed from newer PCIe RAID controllers or solid state cards.

Memory

Another perk of the Z68 chipset is that it will support up to 32GB of DDR3 RAM, when it becomes available that is. In the short to mid term I’ve got 16GB of Kingston HyperX 1600 DDR3 installed. That’s 115.00 in memory. I could have shaved a few dollars off but buying this as a four piece kit saves me from having to play the mix and match game with memory and hoping that it all works out.

IO System

This is where things get a little complicated. Since I need a lot of flexibility I need to have some additional hardware.

RAID Controller

I have an LSI MegaRAID 9260 6Gb/s card in the server now. At 530.00 it is a lot of card for the money. If you wanted to skip the SAS expanders and get a 24 port card you would be looking between 1100.00 to 1500.00. What’s worse, you really won’t see a huge jump in performance. Hard disks are a real limiting factor here.

SAS Expanders

SAS expanders are a must. There will be times where I will power all 24 drives from a single RAID card that has 24 lanes. There will also be times where I have smaller controllers installed and need to aggregate those drives together across or two connectors on a RAID controller. There are a couple of choices available to you. I opted for the Intel RES2Sv240 expander over the HP 468406-B21. The Intel expander supports the SAS 6Gb/s protocol and has one additional killer feature, it doesn’t require a PCIe slot to run. It was designed to work in cases that support the MD2 form factor. That means it could be mounted on a chassis wall and fed with a standard molex power connector. Why is such a big deal? It means I can stack these in my case and keep my very valuable PCIe slots free for RAID controllers and SSD cards. Newegg has them at 279.00 but you can find them cheaper. The HP expander is listed at 379.00 and requires a PCIe slot for power.

Hard Drives

I opted for smaller 73GB 15,000 RPM Fujitsu drives. They aren’t the fastest drives out since they are a generation behind. What they lack in speed they make up in price. Normally, these drives new cost 150.00 a pop. But, I’m a risk taker. You can find refurbished or pulls for as little as 22 bucks a drive. Make sure you are dealing with a seller that will take returns! I personally have had pretty good luck dealing with wholesale companies that specialize in buying older servers and then reselling the parts. Almost all of them will offer at least a 30 day return. That means you need to do a little more work on your end and validate the drives during your return window. Now I have 24 15k drives for under 600.00 bucks.

I’m using a 2.5″ 7200RPM drive as my boot drive mounted inside the case.

SSD’s

You didn’t think I’d put together a new system and not have some solid state in it did you? I’ve got a few SSD’s floating around but wanted to buy the latest in consumer grade drives and see if they have upped the game any. I opted for the Corsair Force GT 60GB drive, four of them. At 125.00 they are a solid buy for the performance you are getting. Based on the new Sanforce SF2280 controller and able to deliver 85k IOps and 500MB/sec in reads and writes they are a mighty contender. The other thing that pushed me to this drive was the fact it uses ONFI synchronous flash. I won’t hash out why it is better other than to say it produces more reliable results and is faster than its asynchronous or toggle NAND brothers.

Again, the case is so big on the inside I mounted two 1×2 3.5″ to 2.5″ drive bays to house them. That was an extra 50.00 a pop.

Lets Recap

Case 400.00
Powersupply 100.00
Motherboard 130.00
CPU 314.oo
Memory 115.00
RAID HBA 530.00
SAS Expanders 558.00
24 15K drives 558.00
4 SSD’s 500.00

Grand total: 3205.00

What does this buy me? A server that can do 2GB/s in reads or writes and 160k IOps or more. I’ll let you in on another little secret, shop around! Don’t think you have to buy everything at once. Don’t be afraid to wait a week for your parts if you get free shipping. By taking a month to put this machine together I paid about 2700.00. A huge discount over the listed price getting 30% or more off some stuff like the expanders, RAID controller, SSD’s, Case and CPU.

Just in case you were wondering what it looks like:

With the bonnet off (early test setup):

The SAS Backplanes cabled up:

Pliant Technology, Enterprise Flash Drives For Your SQL Server: Part 2

Adding In Others For Contrast

In our first part we introduced Pliant and the LS 300 drive. In part 2 we get down to the details. To give a better idea where you stand with the setup described last time I’m throwing in two other storage setups. A RAID 10 array made up of 12 500GB 7200 RPM drives attached via SATA II controllers In a RAID 0 configuration I was able to get 800MB/sec in sequential throughput so it isn’t horrible, just not “enterprise” worthy. A Patriot Torqx 128GB based on Indilinx Bigfoot SSD controller, not the greatest SSD on the consumer market but Indilinx was the king of the previous generation. I will be using the LSI controller just like I did for the Pliant LS 300.

Patriot Torqx Specifications:
Available in 64GB, 128GB and 256GB capacities
Interface: SATA I/II
Raid Support: 0, 1, 0+1
256GB and 128GB: Sequential Read: up to 260MB/s Sequential Write: up to 180MB/s
MTBF: >2,500,000 Hours
Data Retention: 5 years at 25°C
Data Reliability: Built in BCH 8, 12 and 16-bit ECC
10 Year Warranty

RAID support? I’m not sure what they are saying here other than don’t put this drive in a RAID 5 or RAID 6 setup at all. Mean time between failures(MTBF) is a pretty useless number, I would have rather seen a maximum write life or writes per day metric. It has ECC error checking, since this is an MLC based drive that doesn’t surprise me at all. 10 year warranty, yep 10 YEARS! This was one of the reasons I bought this drive. And I’m glad I did, it has already been replaced once.

The Setup

Since we are just testing storage systems I’m not as concerned with the host machine. It is more than up to the task of generating IO’s. I used Iometer 2008.06.18-RC2 for testing and my trusty
Iometer SQL Server IO Patterns File. After the test runs I used my other tool the Iometer output parser and importer to process the results and import them into a SQL Server table. The tests consisted of two different patters. These two patterns are close to what I’ve seen in the real world and loosely based on the Intel database test pattern. I run these test at different queue depths with a single worker
OLTP Heavy Read:
A mix of 8KB and 64KB size request with 90% of them being read request and 10% being write request. This test is 100% random access.

OLTP Moderate Read:
A mix of 8KB and 64KB size request with 65% of them being read request and 35% being write request. This test is 100% random access.

Lots And Lots of Graphs

This first set is OLTP Heavy Read at a queue depth of 1. Average Response Time is in milliseconds (ms).

Interesting to see the Torqx drive actually performing better than the Pliant drive. Since this is an extremely light load and mostly read only we can assume that the Torqx is tuned more towards that kind of workload. The hard disks put in a respectable showing, for hard disks.

OLTP Heavy Read at a queue depth of 4. Average Response Time is in milliseconds (ms).

As soon as we put some kind of load the Pliant drive just walks away from the other two drives. The Torqx is still five times faster than the RAID 10 setup.

OLTP Heavy Read at a queue depth of 8. Average Response Time is in milliseconds (ms).

Again, as the workload ramps up the Pliant really just ends up in a category all its own. We are still in a decent zone for the RAID setup but the single Torqx drive still is four to five times faster.

OLTP Heavy Read at a queue depth of 32. Average Response Time is in milliseconds (ms).

Now we are pushing past the bounds of the SATA based Torqx and the SATA based RAID setup. The Pliant drive just keeps getting faster jumping from 13,000 IO/sec to 22,000 IO/sec. Response times are still very impressive as well.

OLTP Heavy Read at a queue depth of 128. Average Response Time is in milliseconds (ms).

This is what we would call a “worst case scenario” for the RAID setup. With only 12 drives we are at a queue length of 10 for each drive. Response times are showing it too with the average being 110ms. Even the Torqx drive can’t shed the IO load at this point while the Pliant drive drives past 26,000 IO/sec and inches up on 500MB/sec as well. That last statement is accurate. Since this is a dual-port drive even though its a SAS 300 drive it is able to use both ports for read and writes. I did run the test up to 256 outstanding IO/sec but the Pliant drive was capped out and was starting to add some to the response time. The RAID array and the Torqx drive were getting so slow that the Pliant drive was hard to see on the average response time graph.

This second set is OLTP Moderate Read at a queue depth of 1. Average Response Time is in milliseconds (ms).

This workload is much more write intensive and the Pliant LS 300 jumps out in front very quickly. Even at 1 queue depth it is shaming the Torqx on write performance. The RAID array is performing pretty well with lower than expected response times.

OLTP Moderate Read at a queue depth of 4. Average Response Time is in milliseconds (ms).

Quickly the Pliant drive starts to walk away with this contest. It clearly has much more capacity for write workloads than the Torqx or RAID array.

OLTP Moderate Read at a queue depth of 8. Average Response Time is in milliseconds (ms).

Here we are again at the end of the road for the RAID array. The Torqx drive is holding on but response times are getting long. It is only managing to pull a two fold increase in performance over the RAID array.

OLTP Moderate Read at a queue depth of 32. Average Response Time is in milliseconds (ms).

Now things are just embarrassing for the RAID array and the Torqx drive. Both showing that write heavy workloads aren’t the best fit. Again, the Pliant drive is starting to get response times in the millisecond range but at 320MB/Sec and 18,000 IO/Sec I would have to call that a fair trade.

OLTP Moderate Read at a queue depth of 128. Average Response Time is in milliseconds (ms).

At last we have hit a wall with the RAID array and the Torqx drive. With the Torqx drive posting up numbers that are less than two times the RAID array it is starting to show its real weaknesses. The Pliant drive however is pulling a solid 22,ooo IO/Sec and creeping up on 43oMB/Sec of throughput. All of this from a single SAS 3.5″ drive.

Final Thoughts

I’ve had the Pliant LS 300 in my lab for quite a while now. I’ve also had the Patriot Torqx and this particular RAID array setup. All three have been running hard during the last three months. The Pliant drive did show some signs of slowing down as it settled into the workloads. The RAID array lost three drives total and as I stated earlier, the first Torqx drive I had gave up the ghost in the first month. I’ve said it before, and I will say it again. If you need an enterprise drive then buy an enterprise drive! Don’t get a drive that has a SATA interface and is dressed up like it is ready for the big show. I can say without a doubt the the Pliant LS 300 is one of the finest solid state disk I’ve ever worked with.

Secrets Of SQL Server: SQL Server, Storage And You Part 3 Solid State Storage

My last in the series on storage and SQL Server is today Wed, Jun 8, 2011 3:00 PM EDT (2:oo PM CST). You can register here if you want to take a deeper look into solid state storage. If you want a solid primer into flash based storage devices this is an excellent way to get it. If you haven’t seen my first part in this series go watch it!

Looking forward to rapping up this series and answering a TON of questions!